68 research outputs found

    Geometry-based tunability enhancement of flexible thin-film varactors

    Get PDF
    In this letter, flexible voltage-controlled capacitors (varactors) based on an amorphous Indium–Gallium–Zinc–Oxide (a-IGZO) semiconductor are presented. Two different varactor designs and their influence on the capacitance tuning characteristics are investigated. The first design consists of a top electrode finger structure which yields a maximum capacitance tunability of 6.9 at 10 kHz. Second, a novel interdigitated varactor structure results in a maximum tunability of 93.7 at 100 kHz. The design- and frequency-dependencies of the devices are evaluated through C–V measurements. Furthermore, we show bending stability of the devices down to a tensile radius of 6 mm without altering the performance. Finally, a varactor is combined with a thin-film resistor to demonstrate a tunable RC-circuit for impedance matching and low-pass filtering applications. The device fabrication flow and material stack are compatible with standard flexible thin-film transistor fabrication which enables parallel implementation of analog or logic circuitry and varactor devices

    Improvement of contact resistance in flexible a-IGZO thin-film transistors by CF4/O2 plasma treatment

    Get PDF
    In this work, we analyze the effect of CF4/O2 plasma treatment on the contact interface between the amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor and Titanium-Gold electrodes. First, the influence of CF4/O2 plasma treatment is evaluated using transmission line structures and compared to pure O2 and CF4 plasma, resulting in a reduction of the contact resistance RC by a factor of 24.2 compared to untreated interfaces. Subsequently, the CF4/O2 plasma treatment is integrated in the a-IGZO thin-film transistor (TFT) fabrication process flow. We achieve a reduction of the gate bias dependent RC by a factor up to 13.4, which results in an increased current drive capability. Combined with an associated channel length reduction, the effective linear field-effect mobility is increased by up to 74.6% for the CF4/O2 plasma treated TFTs compared to untreated reference devices

    Radio frequency electronics on plastic

    Get PDF
    In this paper the recent progress of active high frequency electronics on plastic is discussed. This technology is mechanically flexible, bendable, stretchable and does not need any rigid chips. Indium Gallium Zinc Oxide (IGZO) technology is applied. At 2 V supply and gate length of 0.5 ÎŒm, the thin-film transistors (TFTs) yield a measured transit frequency of 138 MHz. Our scalable TFT compact simulation model shows good agreement with measurements. To achieve a sufficiently high yield, TFTs with gate lengths of around 5 ÎŒm are used for the circuit design. A Cherry Hopper amplifier with 3.5 MHz bandwidth, 10 dB gain and 5 mW dc power is presented. The fully integrated receiver covering a plastic foil area of 3 × 9 mm2 includes a four stage cascode amplifier, an amplitude detector, a baseband amplifier and a filter. At a dc current of 7.2 mA and a supply of 5 V, a bandwidth of 2 - 20 MHz and a gain beyond 15 dB were measured. Finally, an outlook regarding future advancements of high frequency electronics on plastic is given

    Flexible sensors—from materials to applications

    Get PDF
    Flexible sensors have the potential to be seamlessly applied to soft and irregularly shaped surfaces such as the human skin or textile fabrics. This benefits conformability dependant applications including smart tattoos, artificial skins and soft robotics. Consequently, materials and structures for innovative flexible sensors, as well as their integration into systems, continue to be in the spotlight of research. This review outlines the current state of flexible sensor technologies and the impact of material developments on this field. Special attention is given to strain, temperature, chemical, light and electropotential sensors, as well as their respective applications

    Fabricating and Assembling Acoustic Metamaterials and Phononic Crystals

    No full text
    Acoustic metamaterials (AMM) and phononic crystals (PC) have the potential to unfold a new wave of disruptive technologies to radically transform human interactions, sensory communications, and beyond. Although essential, cultivating a deep understanding of the fundamental theory and design principles is insufficient alone, in the practical advancement of AMMs and PCs. Equally important is the physical realization of these artificial structures for tangible prototyping and experimental investigation; however, such aspects are seldom discussed in literature. Herein, the fabrication and assembly approaches for AMMs and PCs are critically examined, with a tight coupling of theoretical and experimental considerations. Crucial parameters like operating frequency, materials, and geometry for efficient structural implementation are addressed. Herein, fabrication methods for specific structure types are categorized under “single-step fabrication” including printing and machining and “multi-step fabrication” like microfabrication and molding. Various “assembly” techniques are proposed, such as for ordering colloidal assemblies or fastening components without adhesives. This framework uncovers innovative designs, e.g., origami-based structures with conductive coating, only accessible if fabrication and assembly aspects form an integral part of the initial design phase. By establishing a greater understanding and awareness of these methods, a host of undiscovered pathways, opportunities, and research gaps is revealed, supporting a fresh paradigm for innovation
    • 

    corecore